Kalopanacis Cortex extract-capped gold nanoparticles activate NRF2 signaling and ameliorate damage in human neuronal SH-SY5Y cells exposed to oxygen–glucose deprivation and reoxygenation
نویسندگان
چکیده
Recently, environment-friendly synthesis of gold nanoparticles (GNPs) has been extensively explored by biologists and chemists. However, significant research is still required to determine whether "eco-friendly" GNPs are beneficial to human health and to elucidate the molecular mechanisms of their effects on human cells. We used human neuronal SH-SY5Y cells to show that treatment with Kalopanacis Cortex extract-capped GNPs (KC-GNs), prepared via an eco-friendly, fast, one-pot synthetic route, protected neuronal cells against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced damage. To prepare GNPs, Kalopanacis Cortex was used without any chemical reducing and stabilizing agents. Ultraviolet-visible spectroscopy showed maximum absorbance at 526 nm owing to KC-GN surface plasmon resonance. Hydrodynamic size (54.02±2.19 nm) and zeta potential (-20.3±0.04 mV) were determined by dynamic light scattering. The average diameter (41.07±3.05 nm) was determined by high-resolution transmission electron microscopy. Energy-dispersive X-ray diffraction spectroscopy and X-ray diffraction confirmed the presence of assembled GNPs. Fourier transform infrared analysis suggested that functional groups such as O-H, C-C, and C-N participated in KC-GN formation. Cell viability assays indicated that KC-GNs restored the viability of OGD/R-treated SH-SY5Y cells. Flow cytometry demonstrated that KC-GNs inhibited the OGD/R-induced reactive oxygen species production and mitochondrial membrane potential disruption. KC-GNs also inhibited the apoptosis of OGD/R-exposed cells. Western blot analysis indicated that the OGD/R-induced cellular apoptosis and simultaneous increases in the expression of cleaved caspase-3, p53, p21, and B-cell lymphoma 2-associated X protein were reversed by KC-GNs. The KC-GN-mediated protection against OGD/R-induced neurotoxicity was diminished by NRF2 and heme oxygenase-1 gene knockdowns. Collectively, these results suggested that KC-GNs exerted strong neuroprotective effects on human neuronal cells, which might be attributed to the attenuation of OGD/R-induced neuronal cell injury through the NRF2 signaling pathway.
منابع مشابه
Rheum turkestanicum Janisch Root Extract Mitigates 6-OHDA-Induced Neuronal Toxicity Against Human Neuroblastoma SH-SY5Y Cells
Background and Objective: Rheum turkestanicum (R. turkestanicum) has been known to reduce inflammation and has antioxidant properties such as protective effect in neurons. This study aimed to determine the effects of R. turkestanicum on neuronal toxicity induced by the pro-parkinsonian neurotoxin 6-hydroxydopamine (6-OHDA) in neuroblastoma SH-SY5Y cells. Materials and Methods: MTT and DNA frag...
متن کاملInvolvement of Mu Opioid Receptor Signaling in The Protective Effect of Opioid against 6-Hydroxydopamine-Induced SH-SY5Y Human Neuroblastoma Cells Apoptosis
Introduction: The neuroprotective role of opioid morphine against 6-hydroxydopamineinduced cell death has been demonstrated. However, the exact mechanism(s) underlying such neuroprotection, especially the role of subtype receptors, has not yet been fully clarified. Methods: Here, we investigated the effects of different opioid agonists on 6-OHDA-induced neurotoxicity in human neuroblastoma...
متن کاملDehydroepiandrosterone protects male and female hippocampal neurons and neuroblastoma cells from glucose deprivation
Dehydroepiandrosterone (DHEA) modulates neurogenesis, neuronal function, neuronal survival and metabolism, enhancing mitochondrial oxidative capacity. Glucose deprivation and hypometabolism have been implicated in the mechanisms that mediate neuronal damage in neurological disorders, and some studies have shown that these mechanisms are sexually dimorphic. It was also demonstrated that DHEA is ...
متن کاملAMPK activation by Tanshinone IIA protects neuronal cells from oxygen-glucose deprivation
The current study tested the potential neuroprotective function of Tanshinone IIA (ThIIA) in neuronal cells with oxygen-glucose deprivation (ODG) and re-oxygenation (OGDR). In SH-SY5Y neuronal cells and primary murine cortical neurons, ThIIA pre-treatment attenuated OGDR-induced viability reduction and apoptosis. Further, OGDR-induced mitochondrial depolarization, reactive oxygen species produc...
متن کاملNeuroprotective effects of Salvia aristata Aucher ex Benth. on hydrogen peroxide induced apoptosis in SH-SY5Y neuroblastoma cells
Background and objectives: Oxidative stress is implicated in the neuronal damage associated with Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotropic lateral sclerosis and cerebral ischemic stroke. The present work was designed to establish the neuroprotective effects of Salvia aristata extract on H2O2-induced apoptosis in human dopaminergic ...
متن کامل